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Abstract 

Let R be a ring with 1, 0R  the center of R, G a group, RG a group ring of G over 

R, and C the center of RG. If RG is Azumaya, then so is RK for every subgroup K 
of G. For a subgroup K of finite order K  invertible in R, if RG is Azumaya, then 

RG is a Hirata separable extension of ( )KRC  and ( ) ,0
KGR  respectively, which 

are direct summands of RG as bimodules over themselves, where K  is the inner 
automorphism group of the group ring RG induced by the elements of K. Also, for 
any subgroup K of G, the converse holds. 

1. Introduction 

Let R be a ring with 1, 0R  the center of R, G a group, RG a group 

ring of G over R, and C the center of RG. In [2], it is shown that RG is an 
Azumaya algebra over C, if and only if there exists a subgroup H of G 
such that ,ZHG =  where Z is the center of G and RH is an Azumaya 
algebra ([2], Lemmas 2.2, 4.2, and 4.3). In the present paper, we shall 
show that if RG is Azumaya, then so is RK for each subgroup K of G. 
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Thus, we give a different proof of the above characterization of an 
Azumaya group ring RG. Moreover, let K be any subgroup of finite order 
K  invertible in R. If RG is Azumaya, then RG is a Hirata separable 

extension of ( )KRC  and ( ) ,0
KGR  respectively, which are direct 

summands of RG as bimodules over themselves. This implies a 
characterization of an Azumaya group ring RG in terms of Hirata 
separable extensions.  

2. Basic Definitions and Notations 

Let B be a ring with 1, and A be a subring of B with the same identity 
1. Then B is called a separable extension of A, if there exist { ii ba ,  in 

kiB ,,2,1, K=  for some integer }k  such that ,1=∑ iiba  and 

xbabxa iiii ⊗=⊗ ∑∑  for all x in B, where ⊗  is over A. In particular, 

B is called an Azumaya algebra, if it is a separable extension over its 
center. A ring B is called a Hirata separable extension of A, if BB A⊗  is 

isomorphic to a direct summand of a finite direct sum of B as a B-
bimodule. For more about Azumaya algebras and Hirata separable 
extensions, see [5], [6], and [7]. The commutator subring of A in B is 
denoted by ( ).AVB  

Throughout this paper, R will be a ring with identity 1, 0R  the center 

of R, G a group, RG a group ring of G over R, and C the center of RG. 

3. Subgroup Rings 

In this section, let RG be an Azumaya group ring. We shall show that 
for any subgroup K of G, RK is also Azumaya. Then, we derive a 
characterization of an Azumaya group ring RG by using subgroups K of G 
such that ,ZKG =  where Z is the center of G. We begin with an 
important characterization of an Azumaya group ring in [2]. 

Proposition 3.1 ([2], Theorem 1). The group ring RG is an Azumaya 
algebra, if and only if (i) R is an Azumaya algebra over ,0R  (ii) the center 
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Z of G has a finite index, and (iii) the order of the commutator subgroup 
G′  of G is a finite integer and invertible in R. 

Lemma 3.2. Let K be a subgroup of G. If RG is Azumaya, then RK is 
Azumaya. 

Proof. Since RG is Azumaya, ZG  is finite by Proposition 3.1. 

Hence, ( ) .∞<≤ ZGZKZ  But ( ) ( ),ZKKZKZ I≅  so ( ) ZKZ  
( ) .∞<= ZKK I  Let ( )KZ  be the center of K. Then ( );KZZK ⊂I  

and so ( ) ( ) .∞<≤ ZKKKZK I  Moreover, the commutator subgroup 

K ′  of K is contained in ,G′  so K ′  is finite and invertible in R for G′  is 

finite and invertible in R by Proposition 3.1, again. Noting that R is an 
Azumaya algebra over ,0R  we conclude that RK is Azumaya by 
Proposition 3.1. 

Now, we give a different proof of the characterization of an Azumaya 
group ring RG by using subgroups K of G. 

Theorem 3.3. The group ring RG is Azumaya, if and only if for each 
subgroup K of G such that RKZKG ,=  is Azumaya. 

Proof. By Lemma 3.2, the necessity is true. For the sufficiency,        
let ( )KZ  be the center of K. Since, ( ) ., ZKZZKG ⊂=  Hence, 

( ) .KZKZ I=  By hypothesis, RK is Azumaya, so ( )KZK  

( ) ∞<= ZKK I  by Proposition 3.1. Noting that ,ZKG =  we have 

that ( ) == ZZKZG  ( ) .∞<ZKK I  Moreover, since ZKG =  

again, ( ) ,KZKG ′=′=′  so ,KG ′=′  which is finite and invertible in R 

(for RK is an Azumaya algebra). Also R is Azumaya, so RG is Azumaya 
by Proposition 3.1. 

4. Hirata Separable Extensions 

Let K be a finite subgroup of G. We shall show that, if RG is Azumaya 
and K  is invertible in R, then RG is a Hirata separable extension of 

( )KRC  and ( ) ,0
KGR  respectively, which are direct summands of RG as 
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bimodules over themselves. This leads to a characterization of an 
Azumaya group ring RG in terms of Hirata separable extensions. We 
shall employ a well known property of a group ring of a finite group. 

Lemma 4.1. If K is a finite group and K  is invertible in R, then RK 

is a separable extension of R. 

Lemma 4.2. Let RG be Azumaya. If K is a finite subgroup of G such 

that ,1 RK ∈−  then (i) ( )KRC  and ( )KGR0  are direct summands of RG 

as bimodules over themselves, where K  is the inner automorphism group 
of the group ring RG induced by the elements of K, and (ii) RG is a Hirata 

separable extension of ( )KRC  and ( ) ,0
KGR  respectively. 

Proof. (i) Since RKRK ,1 ∈−  is a separable extension of R by 
Lemma 4.1. By hypothesis, RG is Azumaya, so R is an Azumaya algebra 
over 0R  by Proposition 3.1. Hence, RK is a separable -0R algebra by the 
transitivity property of separable extensions. Thus, RKC R0⊗  is a 

separable C-algebra; and so as a homomorphic image of ,0 RKC R⊗  

( )KCR  is a separable C-algebra. Since RG is an Azumaya C-algebra, 
( )( )KRCVRG  is a separable C-subalgebra of RG by the commutator 

theorem for Azumaya algebras ([1], Theorem 4.3, page 57). Noting that 

( )( ) ( ) ( ) ,0
K

RGRG GRRKVKRCV ==  we have that ( )KGR0  is a 

separable subalgebra of RG over C. But then, both ( )KRC  and ( )KGR0  
are direct summands of the Azumaya algebra RG as bimodules over 
themselves. This proves part (i). Moreover, RG is projective over ( )KRC  

and ( ) ,0
KGR  respectively, ([1], Proposition 2.3, page 48). Therefore, RG 

is a Hirata separable extension of ( )KRC  and ( ) ,0
KGR  respectively, ([3], 

Theorem 1). This proves part (ii). 

To obtain a characterization of an Azumaya group ring RG in terms of 
Hirata separable extensions, we shall employ a result as given by Sugano. 
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Lemma 4.3 ([4], Proposition 1.3). Let B be a Hirata separable 
extension of A and A is a direct summand of B as an A-bimodule. Then, 

( )AVB  is a separable algebra over the center of B. 

Theorem 4.4. A group ring RG is Azumaya, if and only if there exists 
a subgroup K of G such that (i) RG is a Hirata separable extension of 

( )KRC  and ( ) ,0
KGR  respectively, and (ii) ( )KRC  and ( )KGR0  are 

direct summands of RG as bimodules over themselves, where K  is the 
inner automorphism group of the group ring RG induced by the elements 
of K. 

Proof. ( )⇒  By taking G′  as K in Lemma 4.2, the necessity is a 

consequence of Lemma 4.2 because ∞<′G  and RG ∈′ −1  by 

Proposition 3.1. 

( )⇐  Since, RG is a Hirata separable extension of ( )KRC  and ( )KRC  

is a direct summand of RG as a bimodule over ( ) ( )( )KRCVKRC RG,  is a 

separable subalgebra of RG over C by Lemma 4.3. Thus, ( )KGR0  

( )( )( )KRCVRG=  is a separable subalgebra of RG over C. By hypothesis, 

RG is a Hirata separable extension of ( ) ,0
KGR  so RG is a separable 

extension of ( ) .0
KGR  Therefore, RG is a separable C-algebra by the 

transitivity property of separable extensions; and so RG is Azumaya. 

We conclude this paper with three examples to demonstrate the 
results of the paper. 

Example 1. Let G be a nonabelian group and R be the ring of 
integers. Then G′  is not invertible in R; and so RG is not Azumaya. 

Example 2. Let G be a finite nonabelian group, R be the ring of 
integers, and .mG =′  Then GRm  is Azumaya, where mR  is the ring of 

R localized with respect to the multiplicatively closed set 

{ }L,,,,1 32 mmm  because G′  is invertible in .mR  
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Example 3. Let GRm  be given in Example 2 and K be a subgroup of 

G such that .GK ′⊂  Then (1) KRm  is Azumaya by Lemma 3.2, (2) GRm  

is a Hirata separable extension of ( )KCRm  and ( ) ,K
mGR  respectively, 

and ( )KCRm  and ( )KmGR  are direct summands of GRm  as bimodules 
over themselves by Theorem 4.4. 
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